Some Qur'anic verses and their interpretation are
incorporated into this topic, which is taken primarily From Wikipedia, the free
encyclopedia.
For other uses, see Dark Matter (disambiguation).
In astronomy
and cosmology, dark matter is matter that is
inferred to exist from gravitational effects on visible matter and background
radiation, but is undetectable by emitted or scattered electromagnetic radiation.[1]
Its existence was hypothesized to account for discrepancies between
measurements of the mass of galaxies, clusters of galaxies and the entire universe made
through dynamical
and general relativistic means, and accounting for
matter based on counting atoms in stars and the gas and dust of the interstellar and intergalactic
media. According to observations of structures larger than galaxies, as
well as Big
Bang cosmology, dark matter accounts for 23% of the mass-energy density of the observable universe, while the ordinary matter
accounts for only 4.6% (the remainder is attributed to dark energy).[2]
يمتلك
كلٌّ من
الإشعاع
والمادّة
العاديّة والمادّة
المظلمة
ضغطاً
موجباً؛
وبالتالي تؤثّر
جميعها بقوة
جذب ثقالي. بينما
تؤكّد
النسبيّة
العامّة أنّ
قّوة تنافر
ثقالي تصاحب
الضغط
السّالب (negative pressure). ويطلق
الضغط
السّالب على
الحالة التي
يكون فيها ضغط
منطقة محصورة
أقل من ضغط
محيطها.
وبالتالي
يمتاز الفراغ
بجسامة ضغطه
السّالب
وامتلاكه طاقة مظلمة
كبيرة. لو
تخيّلنا أنّ
مكبسا (Piston) يغطّي
أسطوانة
مفرغة.
عند سحب
المكبس
للخارج
يتعاظم
الفراغ داخل
الأسطوانة،
وتزداد طاقته
المظلمة بفعل
القوّة التي
تسحب المكبس
للخارج.
في نفس الوقت
نلاحظ أنّ الفراغ
يؤثّر على
المكبس بقوّة
للداخل؛ وذلك أنّ
ضغطه سالبٌ. مباشرة
بعيد الانفجار
العظيم
وأثناء حقبة
التضخّم كانت
كثافة الطاقة
المظلمة كبيرة
في الكون؛
وبالتالي كان
الكون يتوسّع
بتسارع كبير.
The negative pressure (dark energy) is consistent with the fact that
samaa (canopy) does not have any cracks; as emphasized by the
verse: (Do they not look at the samaa (sky, firmament) above them? How We
have made it and adorned it, and there are no cracks in it?) (S. 50, V. 6).
ولعلّ هذا
بعضٌ من مدلول
قوله تعالى (وَالسَّمَاءِ
ذَاتِ
الرَّجْعِ)
(الطارق 11) ، على اعتبار
أنّ السّماء
هنا هي
البناء.
This is likely to be among things indicated by the following verse:
(By the samaa (Firmament)
which returns), (Surah 86, verse 11)
Dark matter was postulated by Fritz
Zwicky in 1934, to account for evidence of "missing mass" in the
orbital velocities of galaxies in clusters.
Subsequently, other observations have indicated the presence of dark matter in
the universe, including the rotational speeds of galaxies, gravitational lensing of background objects
by galaxy clusters such as the Bullet
Cluster, and the temperature distribution of hot gas in galaxies and
clusters of galaxies.
Dark matter plays a central role in state-of-the-art modeling of structure formation and galaxy evolution, and has measurable
effects on the anisotropies observed in the cosmic microwave background.
This is referred to by the verse:
[10] He set on the (Ardh). Like Mountains standing firm, above it, and bestowed
blessings on the Ardh, and measured therein all things to give them nourishment in
due proportion, in precisely four Days (periods) for those who seek
knowledge, and also in accordance with (the needs of) those who seek
(sustenance). (S. 41, V. 10)
(قُلْ
أَئِنَّكُمْ
لَتَكْفُرُونَ
بِالَّذِي
خَلَقَ
الْأَرْضَ
فِي
يَوْمَيْنِ
وَتَجْعَلُونَ
لَهُ
أَنْدَادًا
ذَلِكَ رَبُّ
الْعَالَمِينَ * وَجَعَلَ
فِيهَا
رَوَاسِيَ
مِنْ
فَوْقِهَا
وَبَارَكَ
فِيهَا
وَقَدَّرَ
فِيهَا أَقْوَاتَهَا
فِي
أَرْبَعَةِ
أَيَّامٍ
سَوَاءً لِلسَّائِلِينَ) (فصلت 10).
ويرى
العمري (خلق
الكون : 2004) أنّ قوله
سبحانه (وَجَعَلَ
فِيهَا
رَوَاسِيَ
مِنْ
فَوْقِهَا
وَبَارَكَ
فِيهَا) قد
يشير إلى
إحداث عدم
تجانس في
مادّة الأرضين
والّتي هي
مادّة مظلمة (Dark matter) أو لربّما
هو إشارة إلى
بداية خلق
مادّة عاديّة
بدأت تتشكّل
وتتكوّن
وترسو في
الجزء العلوي
من الأرض (الأرض
بمعنى جهة
السّفل
من الكون).
أي المادّة
الّتي بدأت
تتشكّل في أعالي
الأرضين
السّبع (شكل 2) ؛
أي في الأماكن
الأقرب إلى
الحيّز الداخلي
للبناء
السّماوي
الأوّل (العمري،
2004 : الأرضون
السّبع؛ العمري،
بناء
السّماء
والمادّة
المظلمة
الباردة : 2002؛ Padmanabhan 1998).
All these lines of evidence suggest that galaxies, clusters of galaxies,
and the universe as a whole contain far more matter than that which interacts
with electromagnetic radiation: the remainder is frequently called the
"dark matter component," even though there is a small amount of baryonic dark matter. The largest part of dark
matter, which does not interact with electromagnetic radiation, is not only
"dark" but also, by definition, utterly transparent.[3]
Transparency is referred to by the verses:
(وَالْأَرْضِ
ذَاتِ
الصَّدْعِ) (الطارق 12)
(And by the Ardh
( dark matter, Earth, . .) which opens out,) (S. 86, V. 12)
وتؤكّد
الآيات
والأحاديث
أنَّ
السّموات والأرض
كانتا رتقاً
عند بداية
الخلق (أَوَلَمْ
يَرَ
الَّذِينَ
كَفَرُوا
أَنَّ السَّمَاوَاتِ
وَالْأَرْضَ
كَانَتَا
رَتْقًا
فَفَتَقْنَاهُمَا
وَجَعَلْنَا
مِنَ الْمَاءِ
كُلَّ شَيْءٍ
حَيٍّ
أَفَلَا
يُؤْمِنُونَ)
[الأنبياء 30].
وأمّا الآن
فهنَّ بسط
وفتق (عمري 2004 : الأرضون
السّبع).
"Do not the Unbelievers see that the Samawat (plural of Sama:
upper part of universe) and the Ardh (lower - interior - part of the Universe) were Ratq (joined,
coupled), before We Fatq (clove asunder, decoupled) them?" (Surat
Al-Anbiyaa No. 21, verse 30).
The vast majority of the dark matter in the universe is believed to be nonbaryonic, which
means that it contains no atoms and does not interact with ordinary matter via electromagnetic forces. The nonbaryonic dark
matter includes neutrinos,
and possibly hypothetical entities such as axions, or supersymmetric
particles. Unlike baryonic dark matter, nonbaryonic dark matter
does not contribute to the formation of the elements
in the early universe ("big bang nucleosynthesis") and so its
presence is revealed only via its gravitational attraction. In addition, if the
particles of which it is composed are supersymmetric, they can undergo annihilation
interactions with themselves resulting in observable by-products such as photons and
neutrinos ("indirect detection").[4]
Nonbaryonic dark matter is classified in terms of the mass of the
particle(s) that is assumed to make it up, and/or the typical velocity
dispersion of those particles (since more massive particles move more slowly).
There are three prominent hypotheses on nonbaryonic dark matter, called Hot
Dark Matter (HDM), Warm Dark Matter (WDM), and Cold
Dark Matter (CDM); some combination of these is also possible. The most
widely discussed models for nonbaryonic dark matter are based on the Cold Dark
Matter hypothesis, and the corresponding particle is most commonly assumed to
be a neutralino.
Hot dark matter might consist of (massive) neutrinos. Cold dark matter would
lead to a "bottom-up" formation of structure in the universe while
hot dark matter would result in a "top-down" formation scenario.[5]
As important as dark matter is believed to be in the universe, direct
evidence of its existence and a concrete understanding of its nature have
remained elusive. After the name of GOD
(ALLAH), the most frequently occurring word in Qur'an is Ardh. One of its meanings is the large scale
structure of dark matter. Even though,
the Qur'an and Hadith tell us few things about Ardh.
Though the theory of dark matter remains the most widely accepted theory
to explain the anomalies in observed galactic rotation, some alternative
theories such as modified Newtonian dynamics and tensor-vector-scalar gravity have been
proposed. None of these alternatives, however, has garnered equally widespread
support in the scientific community.
وفي
الحديث: أن
محمدا رسول
الله – صلى
الله عليه
وعلى آله وسلم
– لم ير قرية
يريد دخولها
إلا قال حين
يراها : اللهم
رب السماوات السبع وما أظللن ، ورب
الأرضين السبع وما أقللن ، ورب
الشياطين وما أضللن ، ورب
الرياح وما ذرين ، فإنا
نسألك خير هذه
القرية ، وخير
أهلها ، ونعوذ
بك من شرها ،
وشر أهلها وشر
ما فيها . وحلف
كعب بالذي فلق
البحر لموسى ،
لأنها كانت دعوات
داود حين يرى
العدو . ) (
الراوي: صهيب
بن سنان
الرومي
القرشي المحدث: الوادعي - المصدر: الصحيح
المسند - الصفحة
أو الرقم: 509 ، خلاصة
حكم المحدث: صحيح).
يوسّع
الله سبحانه
وتعالى بناء
السّماء،
فيتعاظم
الفراغ في
الكون،
وتزداد
الطاقة المظلمة. فينتج
عنه فرش ومهاد
الأرضين (المادّة
المظلمة التي
تحضن جاذبيّا
مجرّات
الكون).
وبالتالي
تتباعد
المسافات بين
المجرّات.
على
الرّاجح أنّ
الأرضين
السّبع هي
الحاضن
الجاذبي
الّذي يجمع
نجوم المجرّة معاً،
كما أنّه هو
العامل
الجاذب
لاجتماع مجرّات
العناقيد
والصفائح
المجريّة
الضّخمة (عمري
2004، الأرضون
السّبع). وكذلك
فإنَّ ممَّا
ينفي التجاور
وأن تكون جميع
المجرّات
تنتمي لأرض
واحدة هو أنَّ
الإزاحة
الحمراء
لأطياف بعض
المجرَّات لا تحقّق
العلاقة
الخطيّة –بين
سرعة المجرّة
وبعدها- في
قانون هابل (43, 107). لذا
فإنَّ توزيع
المجرّات على
نطاق كوني
واسع يعكس
توزيع
المادّة
المظلمة الباردة
المنتظم على
شرائح طباق
ومتباعدة (شكل ، شكل) (108-111)،
وبالتالي
يبيِّن شكل
الأرضين
السَّبع. لذا
فإنَّ
الأرضين طباق
وفتق إتِّفاقاً
بين الآيات
والأحاديث (عمري
2004، الأرضون
السّبع). وهذه
الصَّورة
والهيئة قد
رجّحها جمهور
المفسِّرين
والمحدِّثين. وهذه الهيئة
تتّفق تماماً
مع مكتشفات
علم الكون والفلك
(108-111).
فإنَّ
الفراغات
الكونيّة (Voids)
على نطاق
الكون الواسع
((شكل ، شكل) تؤكّدُ
أنَّ الأرضين
(الحاضن
الجذبي) فتق (111-113).
هذا وإنَّ
اجتماع
المجرّات في
شرائح ضخمة (Huge sheets of
galaxies)
تعيد نفسها
بشكل دوري (repetitive)
وكمومي (quantized) (111) يؤكّد
هو بالتالي
أنَّ الأرضين
السَّبع فتق وطباق
(الشّكل
1 ، شكل).
يؤكّد
علماء الكون
أنّ الفراغات
الكونيّة موجودة
قبل خلق
المجرات، كما
أكّد القرآن
أنّ خلق
الأرضين
السّبع
وفتقها قد سبق
خلق المجرّات
والنّجوم. ودليل
علماء الكون
على أنّ
الفراغات
الكونيّة
موجودة قبل
خلق المجرات
هو
الآتي: لو
افترضوا قيمة
معقولة
للسرعة العشوائيّة
للمجرّات (600km/s) ، فإنّ
المجرّة
تستغرق160
مليار
سنة حتى تقطع
مسافة 100
Mpc
وتعبر فراغاً
(void)
كونيّاً . وهذه
الفترة
الزمنيّة
تعدل عشرة
أضعاف عمر
الكون.
يتطلّبُ هذا
أنّ الفراغات
الكونيّة لا
يمكن أن تنجم
عن حركة
المجرّات بعد
خلقها؛ بل لا
بدّ من أنّ المجرّات
قد خلقت في
مواقع قريبة
من مواقعها الحاليّة
بالنسبة
للفراغات
الكونيّة. بل إنّ
الفراغات
الكونيّة
تعكس أماكن
المجرّات عند
زمن خلقها.
The first person to provide evidence and infer the presence of dark
matter was Swiss astrophysicist Fritz
Zwicky, of the California Institute of Technology
in 1933.[6]
He applied the virial theorem to the Coma cluster of galaxies and obtained
evidence of unseen mass. Zwicky estimated the cluster's total mass based on the
motions of galaxies near its edge and compared that estimate to one based on
the number of galaxies and total brightness of the cluster. He found that there
was about 400 times more estimated mass than was visually observable. The
gravity of the visible galaxies in the cluster would be far too small for such
fast orbits, so something extra was required. This is known as the "missing
mass problem". Based on these conclusions, Zwicky inferred that there
must be some non-visible form of matter which would provide enough of
the mass and gravity to hold the cluster together.
(فَلَا
أُقْسِمُ
بِمَا
تُبْصِرُونَ *
وَمَا لَا
تُبْصِرُونَ)
(الحاقة س 69،
الآيتان 38-39)
(So I do call to witness
what ye see * And what ye see not) (S. 69, V. 38-39)
وَلِلَّهِ
غَيْبُ
السَّمَاوَاتِ
وَالْأَرْضِ
وَإِلَيْهِ
يُرْجَعُ
الْأَمْرُ
كُلُّهُ
فَاعْبُدْهُ
وَتَوَكَّلْ
عَلَيْهِ
وَمَا
رَبُّكَ بِغَافِلٍ
عَمَّا
تَعْمَلُونَ) (هود 123) "وَلِلَّهِ
غَيْب
السَّمَاوَات
وَالْأَرْض"
أَيْ عِلْم
مَا غَابَ
فِيهِمَا
(الجلالين)
(To Allah do belong the unseen (secrets) of the heavens and
the Ardh,
and to Him goeth back every affair (for decision): then worship Him, and put
thy trust in Him: and thy Lord is not unmindful of aught that ye do.) (S. 11,
V. 123)
(قَالَ
يَا آدَمُ
أَنْبِئْهُمْ
بِأَسْمَائِهِمْ
فَلَمَّا
أَنْبَأَهُمْ
بِأَسْمَائِهِمْ
قَالَ أَلَمْ
أَقُلْ
لَكُمْ
إِنِّي
أَعْلَمُ
غَيْبَ
السَّمَاوَاتِ
وَالْأَرْضِ
وَأَعْلَمُ مَا
تُبْدُونَ
وَمَا
كُنْتُمْ)
(البقرة 33). "غَيْب
السَّمَاوَات
وَالْأَرْض"
مَا غَابَ
فِيهِمَا (الجلالين).
(He
said: "O Adam! Tell them their names." When he had told them, Allah
said: "Did I not tell you that I know the secrets
of heavens and Ardh,
and I know what ye reveal and what ye conceal?") (S. 2, V. 33).
(He said: "O Adam! Tell them their
names." When he had told them, Allah said: "Did I not tell you that I know the Mystery of heavens and Ardh,
and I know what ye reveal and what ye conceal?") (S. 2, V. 33)
(وَلِلَّهِ
غَيْبُ
السَّمَاوَاتِ
وَالْأَرْضِ
وَمَا أَمْرُ
السَّاعَةِ
إِلَّا كَلَمْحِ
الْبَصَرِ
أَوْ هُوَ
أَقْرَبُ
إِنَّ اللَّهَ
عَلَى كُلِّ
شَيْءٍ
قَدِيرٌ) (النحل س 16
، آية 77). وَلِلَّهِ
غَيْب
السَّمَاوَات
وَالْأَرْض"
أَيْ عِلْم
مَا غَابَ
فِيهِمَا
"وَمَا أَمْر
السَّاعَة
إلَّا
كَلَمْحِ
الْبَصَر أَوْ
هُوَ
أَقْرَب"
لِأَنَّهُ
بِلَفْظِ كُنْ
فَيَكُون
(الجلالين).
(To Allah belongeth the Mystery of the heavens and the
Ardh.
And the Decision of the Hour (of Judgment) is as the twinkling of any eye, or
even quicker: for Allah hath power over all things.) (S. 16, V. 77)
قُلِ
اللَّهُ
أَعْلَمُ
بِمَا
لَبِثُوا لَهُ
غَيْبُ
السَّمَاوَاتِ
وَالْأَرْضِ
أَبْصِرْ
بِهِ
وَأَسْمِعْ
مَا لَهُمْ
مِنْ دُونِهِ
مِنْ وَلِيٍّ
وَلَا يُشْرِكُ
فِي حُكْمِهِ
أَحَدًا)
(الكهف س 18، آية 26).
"لَهُ غَيْب
السَّمَاوَات
وَالْأَرْض"
أَيْ عِلْمه.
(Say: "Allah
knows best how long they stayed: with Him is (the
knowledge of) the anonymity of the heavens and the Ardh:
how clearly He sees, how finely He hears (everything)! they have no protector
other than Him; nor does He share His Command with any person whatsoever) (S.
18, V. 26)
(نَّ
اللَّهَ
عَالِمُ
غَيْبِ
السَّمَاوَاتِ
وَالأَرْضِ
إِنَّهُ
عَلِيمٌ
بِذَاتِ الصُّدُورِ)
(فاطر س 35، آية 38)
(Verily Allah knows (all) the hidden things of the heavens
and the Ardh:
verily He has full knowledge of all that is in (men's) hearts.) (S. 35, V. 38)
(إِنَّ
اللَّهَ
يَعْلَمُ
غَيْبَ
السَّمَاوَاتِ
وَالأَرْضِ
وَاللَّهُ
بَصِيرٌ
بِمَا تَعْمَلُونَ) (الحجرات س 49، آية 18)
(Verily Allah Knows the veiled of the heavens and the Ardh:
and Allah sees well all that ye do.) (S. 49, V. 18)
Much of the evidence for dark matter comes from the study of the motions
of galaxies.[7]
Many of these appear to be fairly uniform, so by the virial
theorem the total kinetic energy should be half the total gravitational binding energy of the
galaxies. Experimentally, however, the total kinetic energy is found to be much
greater: in particular, assuming the gravitational mass is due to only the visible
matter of the galaxy, stars far from the center of galaxies have much higher
velocities than predicted by the virial theorem. Galactic rotation curves, which illustrate
the velocity of rotation versus the distance from the galactic center, cannot
be explained by only the visible matter. Assuming that the visible material
makes up only a small part of the cluster is the most straightforward way of
accounting for this. Galaxies show signs of being composed largely of a roughly
spherically symmetric, centrally concentrated halo
of dark matter with the visible matter concentrated in a disc at the center. Low surface brightness dwarf galaxies
are important sources of information for studying dark matter, as they have an
uncommonly low ratio of visible matter to dark matter, and have few bright
stars at the center which would otherwise impair observations of the rotation
curve of outlying stars.
Gravitational lensing observations of galaxy
clusters allow direct estimates of the gravitational mass based on its
effect on light from background galaxies. In clusters such as Abell 1689,
lensing observations confirm the presence of considerably more mass than is
indicated by the clusters' light alone. In the Bullet
Cluster, lensing observations show that much of the lensing mass is
separated from the X-ray-emitting baryonic mass. The lensing
mass bends trajectories; which is likely to be indicated by the verses:
(مِنَ
اللَّهِ ذِي
الْمَعَارِجِ * تَعْرُجُ
الْمَلَائِكَةُ
وَالرُّوحُ
إِلَيْهِ فِي
يَوْمٍ كَانَ
مِقْدَارُهُ
خَمْسِينَ
أَلْفَ
سَنَةٍ)
(المعارج س 70
، آية 3-4). تَعْرُجُ
الْمَلَائِكَةُ
وَالرُّوحُ": أَيْ
ذَلِكَ
الْعَذَاب
مِنْ اللَّه
ذِي الْمَعَارِج
أَيْ ذِي
الْعُلُوّ
وَالدَّرَجَات
الْفَوَاضِل
وَالنِّعَم ;
قَالَهُ
اِبْن عَبَّاس
وَقَتَادَة
فَالْمَعَارِج
مَرَاتِب
إِنْعَامه
عَلَى
الْخَلْق
وَقِيلَ ذِي الْعَظَمَة
وَالْعَلَاء
وَقَالَ
مُجَاهِد :
هِيَ مَعَارِج
السَّمَاء .
وَقِيلَ :
هِيَ
مَعَارِج الْمَلَائِكَة
; لِأَنَّ
الْمَلَائِكَةَ
تَعْرُج
إِلَى
السَّمَاء
فَوَصَفَ
نَفْسَهُ بِذَلِكَ
. وَقِيلَ :
الْمَعَارِج
الْغُرَف ; أَيْ
إِنَّهُ ذُو
الْغُرَف ,
أَيْ جَعَلَ
لِأَوْلِيَائِهِ
فِي
الْجَنَّة
غُرَفًا .
وَقَرَأَ
عَبْد اللَّه
" ذِي
الْمَعَارِيج
" بِالْيَاءِ .
يُقَال :
مَعْرَج
وَمِعْرَاج
وَمَعَارِج
وَمَعَارِيج ;
مِثْل
مِفْتَاح
وَمَفَاتِيح .
وَالْمَعَارِج
الدَّرَجَات. أَيْ
تَصْعَدُ فِي
الْمَعَارِج
الَّتِي جَعَلَهَا
اللَّه
لَهُمْ (القرطبي). { فِي
يَوْم كَانَ
مِقْدَاره
خَمْسِينَ
أَلْف سَنَة }
يَعْنِي
يَوْم الْقِيَامَة
(الطبري).
وَالْعَرَج :
آفَة تَعْرِض
لِرِجْلٍ
وَاحِدَة (القرطبي). والعرج
تعبير عن
السير في خط
غير مستقيم.
((A Penalty) from Allah, Lord
of the Ways of Ascent. * The
angels and the Spirit ascend unto Him in a Day the measure whereof is (as)
fifty thousand years:) (S. 70, V. 3-4).
)يُدَبِّرُ
الْأَمْرَ
مِنَ
السَّمَاءِ
إِلَى
الْأَرْضِ
ثُمَّ
يَعْرُجُ
إِلَيْهِ فِي يَوْمٍ
كَانَ
مِقْدَارُهُ
أَلْفَ
سَنَةٍ مِمَّا
تَعُدُّونَ) (السجدة
س 32 ،
آية 5)
(He rules (all) affairs from the heavens to the Ardh:
in the end will (all affairs) go up to Him, on
a Day, the space whereof will be (as) a thousand years of your reckoning.) (S.
32, V. 5).
(يَعْلَمُ
مَا يَلِجُ
فِي
الْأَرْضِ
وَمَا يَخْرُجُ
مِنْهَا
وَمَا
يَنْزِلُ
مِنَ السَّمَاءِ
وَمَا
يَعْرُجُ
فِيهَا
وَهُوَ الرَّحِيمُ
الْغَفُورُ) (سبإ س 34
، آية 2). يَعْرُج
: يَصْعَد
(الجلالين).
(He knows all that goes into the Ardh,
and all that comes out thereof: all that comes down from the sky and all that ascends thereto and He is the Most Merciful, the
Oft-Forgiving.) (S. 34, V. 2).
(هُوَ
الَّذِي
خَلَقَ السَّمَاوَاتِ
وَالْأَرْضَ
فِي سِتَّةِ
أَيَّامٍ
ثُمَّ
اسْتَوَى
عَلَى
الْعَرْشِ
يَعْلَمُ مَا
يَلِجُ فِي
الْأَرْضِ
وَمَا يَخْرُجُ
مِنْهَا
وَمَا
يَنْزِلُ
مِنَ
السَّمَاءِ
وَمَا
يَعْرُجُ
فِيهَا
وَهُوَ
مَعَكُمْ أَيْنَ
مَا كُنْتُمْ
وَاللَّهُ
بِمَا تَعْمَلُونَ
بَصِيرٌ) (الحديد
س 57 ،
آية 4). "وَمَا
يَعْرُجُ
فِيهَا" : يَصْعَد
فِيهَا مِنْ
مَلَائِكَة
وَأَعْمَال
الْعِبَاد
(القرطبي).
(He it is Who created the
heavens and the Ardh
in six Days, and is moreover firmly established on the Throne (of authority),
He knows what enters within the Ardh
and what comes forth out of it, what comes down
from heaven and what mounts up to it. And He is
with you wheresoever ye may be. And Allah sees well all that ye do.) (S. 57, V.
4)
(وَلَوْ
فَتَحْنَا
عَلَيْهِمْ
بَابًا مِنَ السَّمَاءِ
فَظَلُّوا
فِيهِ
يَعْرُجُونَ)
(الحجر س 15
، آية 14).
(Even if We opened out to them a gate from heaven, and
they were to continue ascending therein,) (S.
15, V. 14).
(وَلَوْلَا
أَنْ يَكُونَ
النَّاسُ
أُمَّةً
وَاحِدَةً
لَجَعَلْنَا
لِمَنْ
يَكْفُرُ بِالرَّحْمَنِ
لِبُيُوتِهِمْ
سُقُفًا مِنْ
فَضَّةٍ
وَمَعَارِجَ
عَلَيْهَا
يَظْهَرُونَ) (الزخرف
س 43 ،
آية 33). "
وَمَعَارِج "
يَعْنِي
الدَّرَج ;
قَالَ اِبْن
عَبَّاس
وَهُوَ قَوْل
الْجُمْهُور .
وَاحِدهَا
مِعْرَاج ,
وَالْمِعْرَاج
السُّلَّم ;
وَمِنْهُ
لَيْلَة الْمِعْرَاج
. وَالْجَمْع
مَعَارِج
وَمَعَارِيج ;
مِثْل
مَفَاتِح
وَمَفَاتِيح ;
لُغَتَانِ . "
وَمَعَارِيج
" قَرَأَ
أَبُو رَجَاء
الْعُطَارِدِيّ
وَطَلْحَة
بْن مُصَرِّف
; وَهِيَ الْمَرَاقِي
وَالسَّلَالِيم
. قَالَ الْأَخْفَش
: إِنْ شِئْت
جَعَلْت
الْوَاحِد
مِعْرَج وَمَعْرَج
; مِثْل
مِرْقَاة
وَمَرْقَاة (القرطبي).
(And were it not that (all) men might become of one
(evil) way of life, We would provide, for everyone that blasphemes against
(Allah) Most Gracious, silver roofs for their houses, and (silver) stair-ways on which to go up,) (S. 43, V. 33).
Main article: Galaxy rotation curve
Rotation curve of a typical spiral galaxy: predicted (A) and
observed (B). Dark matter can explain the velocity curve having a 'flat'
appearance out to a large radius
For 40 years after Zwicky's initial observations, no other corroborating
observations indicated that the mass to light ratio was anything other than
unity. Then, in the late 1960s and early 1970s, Vera Rubin,
a young astronomer at the Department of Terrestrial Magnetism at the Carnegie Institution of Washington
presented findings based on a new sensitive spectrograph
that could measure the velocity curve of edge-on spiral
galaxies to a greater degree of accuracy than had ever before been
achieved.[8]
Together with fellow staff-member Kent Ford,
Rubin announced at a 1975 meeting of the American Astronomical Society the
astonishing discovery that most stars in spiral galaxies orbit at roughly the same speed,
which implied that their mass densities were uniform well beyond the locations
with most of the stars (the galactic
bulge). An influential paper presented these results in 1980.[9]
These results suggest that either Newtonian gravity does not apply universally or that,
conservatively, upwards of 50% of the mass of galaxies was contained in the
relatively dark galactic halo. Met with skepticism, Rubin insisted that the observations
were correct. Eventually other astronomers began to corroborate her work and it
soon became well-established that most galaxies were in fact dominated by
"dark matter":
(قُلْ
مَنْ رَبُّ
السَّمَاوَاتِ
السَّبْعِ وَرَبُّ
الْعَرْشِ
الْعَظِيمِ)
(المؤمنون 86).
(فَقَضَاهُنَّ
سَبْعَ
سَمَاوَاتٍ
فِي
يَوْمَيْنِ
وَأَوْحَى
فِي كُلِّ
سَمَاءٍ أَمْرَهَا
وَزَيَّنَّا
السَّمَاءَ
الدُّنْيَا
بِمَصَابِيحَ
وَحِفْظًا
ذَلِكَ تَقْدِيرُ
الْعَزِيزِ
الْعَلِيمِ) (فصّلت 12).
(وَبَنَيْنَا
فَوْقَكُمْ
سَبْعًا
شِدَادًا)
(النبأ 12).
- (وَلَقَدْ
خَلَقْنَا
فَوْقَكُمْ
سَبْعَ طَرَائِقَ
وَمَا كُنَّا
عَنِ
الْخَلْقِ
غَافِلِينَ)
(المؤمنون 17)
- (أَلَمْ
تَرَوْا
كَيْفَ
خَلَقَ
اللَّهُ سَبْعَ
سَمَاوَاتٍ
طِبَاقًا)
(نوح 15).
- (اللَّهُ
الَّذِي
خَلَقَ
سَبْعَ
سَمَاوَاتٍ
وَمِنْ
الأرْضِ
مِثْلَهُنَّ
يَتَنَزَّلُ
الأمر
بَيْنَهُنَّ
لِتَعْلَمُوا
أَنَّ اللَّهَ
عَلَى كُلِّ
شَيْءٍ
قَدِيرٌ
وَأَنَّ
اللَّهَ قَدْ
أَحَاطَ
بِكُلِّ
شَيْءٍ عِلْمًا)
] الطّلاق 12
[.
وهذه
الطّبقات
السّبعُ
مسوّاة، ذكره
تعالى في مواضع
متعدِّدة :
- (هُوَ
الَّذِي
خَلَقَ
لَكُمْ مَا
فِي الْأَرْضِ
جَمِيعًا
ثُمَّ
اسْتَوَى
إِلَى السَّمَاءِ
فَسَوَّاهُنَّ
سَبْعَ
سَمَاوَاتٍ
وَهُوَ
بِكُلِّ
شَيْءٍ
عَلِيمٌ) (
البقرة آية
رقم 29 ).
(It is He Who hath created for you all
things that are on Ardh (lower part of universe); then He turned to the Sama and
made them into seven firmaments. And of all things He hath perfect knowledge. ) (S. 2, V. 29)
- (الَّذِي
خَلَقَ
سَبْعَ
سَمَاوَاتٍ
طِبَاقًا مَا
تَرَى فِي
خَلْقِ
الرَّحْمَانِ
مِنْ تَفَاوُتٍ
فَارْجِعْ
الْبَصَرَ
هَلْ تَرَى
مِنْ فُطُورٍ)
]3 الملك[.
أمّا
الآيات الّتي
بيّنت أنّ
الأرضين سبع
فهي قوله
سبحانه وتعالى:-
(اللَّهُ
الَّذِي
خَلَقَ
سَبْعَ سَمَاوَاتٍ
وَمِنَ
الْأَرْضِ
مِثْلَهُنَّ يَتَنَزَّلُ
الْأَمْرُ
بَيْنَهُنَّ
لِتَعْلَمُوا
أَنَّ
اللَّهَ
عَلَى كُلِّ
شَيْءٍ
قَدِيرٌ
وَأَنَّ
اللَّهَ قَدْ
أَحَاطَ بِكُلِّ
شَيْءٍ
عِلْمًا)
[الطلاق 12]. قرأ
الجمهور
(مثلهنّ)
بالنّصب
عطفاً على (سبع
سموات) أو
على تقدير
فعَل: أي وخلق
من الأرض
مثلهنّ (إيجاز
حذف: أي وخلق
سبعاً من
الأرض) (الشوكاني،
محمد بن علي
بن محمّد (ت 1250
هج)، فتح
القدير
الجامع بين
فنّي
الرّواية
والدّراية من
علم التّفسير،
عالم الكتب
(بلا تاريخ) ، 5
أجزاء. ج 5، ص 247؛ القرطبي،
أبي عبد الله
محمد بن أحمد
(ت671
هجري)، الجامع
لأحكام
القرآن، دار
الكتب
العلمية
(بيروت-لبنان
الطبعة الخامسة
1417 هجري-1996
ميلادي)، واحد
وعشرون مجلّدا
. م 4 ج 18 ص
115.).
(وَمَا
قَدَرُوا
اللَّهَ
حَقَّ
قَدْرِهِ وَالْأَرْضُ
جَمِيعًا
قَبْضَتُهُ
يَوْمَ الْقِيَامَةِ
وَالسَّمَاوَاتُ
مَطْوِيَّاتٌ
بِيَمِينِهِ
سُبْحَانَهُ
وَتَعَالَى
عَمَّا
يُشْرِكُونَ)
[الزمر 67]. الْأَرْضُ
هنا تعني
الأرضون
السّبع،
حيث ستعود يوم
القيامة مجموعة
ورتقاً. بدأت
الأرضون
السّبع قبضاً، ثمّ
فتقها الخالق
سبحانه
وتعالى
سبعاً، هذا
وستعود يوم
القيامة إلى
حالة القبض (عمري
2004 خلق الكون بين
الآيات
القرآنيّة
والحقائق
العلميّة؛ عمري
2004 الأرضون
السّبع؛
عمري: مؤتمر
كليّة
الشريعة
السابع إعجاز
القرآن
الكريم. 18-20
رجب 1426 هـ، 23- 25
آب 2005.
جامعة
الزرقاء الأهليّة/
الأردن، محاضرة:
الأرضون
السّبع
وتوزيع
الصفائح المجرِّيّة
الضخمة على
نطاق كوني
واسع).
وهناك
أحاديث يردُ
فيها ذكر
الأرضين
بصيغة الجمع
لا المفرد. وهذه
تبيّنُ تغيّر
حالة
الأرضين بين
القبض يوم
القيامة
والبسط الآن:
عن
عبدالله بن
مسعودٍ –رضي
الله عنه- قال
جاء حبرٌ من
الأحبار إلى
رسول الله –
صلّى الله
عليه وسلم –
فقال يا محمّد
إنّا نجدُ أنّ
الله يجعلُ
السّموات على
إصبعٍ
والأرضين على
إصبعٍ
والشّجر على
إصبع والماءَ
والثّرى على
إصبعٍ وسائر
الخلق على
إصبع فيقول
أنا الملك
فضحك
النّبيُّ –
صلّى الله
عليه وسلم –
حتى بدت
نواجذهُ
تصديقاً لقول
الحبر ثمّ قرأ
رسولُ الله –
صلّى الله
عليه وسلم – (وَمَا
قَدَرُوا
اللَّهَ
حَقَّ
قَدْرِهِ وَالْأَرْضُ
جَمِيعًا
قَبْضَتُهُ
يَوْمَ الْقِيَامَةِ
وَالسَّمَاوَاتُ
مَطْوِيَّاتٌ
بِيَمِينِهِ
سُبْحَانَهُ
وَتَعَالَى
عَمَّا
يُشْرِكُونَ) [الزمر
67]. وقد
خُرّجَ
الحديث في
عددٍ من مصادر
السُّنّة .
منها: صحيح
البخاري،
كتاب
التوحيد،
الأحاديث رقم:
6864، 6865، 6959.
الظاهر
أنّ العبارة (تصديقا
لقول الحبر) هي من كلام
الرّاوي.
والدليل هو
أنّ الآية التي
قرأها الرسول:
(وَمَا
قَدَرُوا
اللَّهَ
حَقَّ قَدْرِهِ
وَالْأَرْضُ
جَمِيعًا
قَبْضَتُهُ
يَوْمَ
الْقِيَامَةِ
وَالسَّمَاوَاتُ
مَطْوِيَّاتٌ
بِيَمِينِهِ
سُبْحَانَهُ
وَتَعَالَى
عَمَّا
يُشْرِكُونَ) كانت ردّا
على قول
الحبر،
وتبيّن صورة
مختلفة ،
وأكّدت أنّ
اليهود لم
يقدروا اللّه
حقّ قدره، وهي
تنزّه اللّه
عن شرك اليهود
(ملحق).
Low Surface Brightness (LSB)
galaxies.[10]
LSBs are probably everywhere dark matter-dominated, with the observed stellar
populations making only a small contribution to rotation curves. Such a property
is extremely important because it allows one to avoid the difficulties
associated with the deprojection and disentanglement of the dark and visible
contributions to the rotation curves.[5]
Spiral Galaxies.[11]
Rotation curves of both low and high surface luminosity galaxies appear to
suggest a universal density profile, which can be expressed as the sum of an
exponential thin stellar disk, and a spherical dark matter halo with a flat
core of radius r0 and density ρ0 = 4.5 × 10−2(r0/kpc)−2/3M⊙pc−3 (here, M⊙
denotes a solar mass, 2 ×
Elliptical galaxies. Some elliptical galaxies
show evidence for dark matter via strong gravitational lensing,[12]
X-ray evidence reveals the presence of extended atmospheres of hot gas that
fill the dark haloes of isolated ellipticals and whose hydrostatic
support provides evidence for dark matter. Other ellipticals have low
velocities in their outskirts (tracked for example by planetary
nebulae) and were interpreted as not having dark matter haloes.[5]
However simulations of disk-galaxy mergers indicate that stars were torn by
tidal forces from their original galaxies during the first close passage and
put on outgoing trajectories, explaining the low velocities even with a DM
halo.[13]
More research is needed to clarify this situation.
Note that simulated DM haloes have significantly steeper density
profiles (having central cusps) than are inferred from observations, which is a
problem for cosmological models with dark matter at the smallest scale of
galaxies as of 2008.[5]
This may only be a problem of resolution: star-forming regions which might alter
the dark matter distribution via outflows of gas have been too small to resolve
and model simultaneously with larger dark matter clumps. A recent simulation [14]
of a dwarf galaxy resolving these star-forming regions reported that strong
outflows from supernovae remove low-angular-momentum gas, which inhibits the
formation of a galactic bulge and decreases the dark matter density to less
than half of what it would have been in the central kiloparsec. These
simulation predictions - bulgeless and with shallow central dark matter
profiles - correspond closely to observations of actual dwarf galaxies. There
are no such discrepancies at the larger scales of clusters of galaxies and
above, or in the outer regions of haloes of galaxies.
Exceptions to this general picture of DM haloes for galaxies appear to
be galaxies with mass-to-light ratios close to that of stars.[citation needed]
Subsequent to this, numerous observations have been made that do indicate the
presence of dark matter in various parts of the cosmos.[citation needed]
Together with Rubin's findings for spiral galaxies and Zwicky's work on galaxy
clusters, the observational evidence for dark matter has been collecting over
the decades to the point that today most astrophysicists accept its existence.
As a unifying concept, dark matter is one of the dominant features considered
in the analysis of structures on the order of galactic scale and larger.
Velocity dispersions of galaxies
In astronomy, the velocity dispersion σ, is the range of
velocities about the mean velocity for a group of objects, such as a cluster of
stars about a galaxy. The fact that different stars have different paths (and thus
different velocities) is indicated by the verse:
(وَالسَّمَاءِ
ذَاتِ
الْحُبُكِ * إِنَّكُمْ
لَفِي قَوْلٍ
مُخْتَلِفٍ)
(الذاريات س 51 آية 7).
(By the
Samaa (Sky) with (its) HUBUK * Truly ye are in a doctrine discordant)
(Surah 51, verse 7).
One of the meanings of the Arabic word Hubuk: is routes, and paths;
like the nice trajectories of stars.
وحبك
السّماء
طرائقها،
وفي التّنزيل
(وَالسَّمَاءِ
ذَاتِ
الْحُبُكِ) :
يعني
الطّرائق ،
كطرائق
النّجوم. ويقول
أهل اللّغة:
ذات الطّرائق
الحسنة.
والمحبوك:
المحكم الخلق. (إِنَّكُمْ
لَفِي قَوْلٍ
مُخْتَلِفٍ) :
أَيْ
إِنَّكُمْ
أَيّهَا
الْمُشْرِكُونَ
الْمُكَذِّبُونَ
لِلرُّسُلِ
لَفِي قَوْل مُخْتَلِف
مُضْطَرِب
لَا
يَلْتَئِم
وَلَا يَجْتَمِع
وَقَالَ
قَتَادَة
إِنَّكُمْ
لَفِي قَوْل
مُخْتَلِف
مَا بَيْن
مُصَدِّق بِالْقُرْآنِ
وَمُكَذِّب
بِهِ (بن كثير).
Rubin's pioneering work has stood the test of time. Measurements of
velocity curves in spiral galaxies were soon followed up with velocity dispersions of elliptical
galaxies.[15]
While sometimes appearing with lower mass-to-light ratios, measurements of
ellipticals still indicate a relatively high dark matter content. Likewise,
measurements of the diffuse interstellar gas found at the edge of galaxies indicate
not only dark matter distributions that extend beyond the visible limit of the
galaxies, but also that the galaxies are virialized
(i.e. gravitationally bound with velocities corresponding to predicted orbital
velocities of general relativity) up to ten times their
visible radii. This
has the effect of pushing up the dark matter as a fraction of the total amount
of gravitating matter from 50% measured by Rubin to the now accepted value of
nearly 95%.
There are places where dark matter seems to be a small component or
totally absent. Globular clusters show little evidence that they
contain dark matter,[16]
though their orbital interactions with galaxies do show evidence for galactic
dark matter. For some time,
measurements of the velocity profile of stars seemed to indicate concentration
of dark matter in the disk of the Milky Way
galaxy, however, now it seems that the high concentration of baryonic matter in
the disk of the galaxy (especially in the interstellar medium) can account for
this motion. Galaxy mass profiles are thought to look very different from the
light profiles. The typical model for dark matter galaxies is a smooth,
spherical distribution in virialized halos.
Such would have to be the case to avoid small-scale (stellar) dynamical
effects. Recent research reported in January 2006 from the University of Massachusetts,
Amherst would explain the previously mysterious warp in the disk of the
Milky Way by the interaction of the Large and Small Magellanic Clouds and the predicted 20
fold increase in mass of the Milky Way taking into account dark matter.[17]
In 2005, astronomers from Cardiff University claimed to discover a galaxy made almost
entirely of dark matter, 50 million light years away in the Virgo
Cluster, which was named VIRGOHI21.[18]
Unusually, VIRGOHI21 does not appear to contain any visible stars: it was seen
with radio frequency observations of hydrogen. Based on rotation profiles, the
scientists estimate that this object contains approximately 1000 times more
dark matter than hydrogen and has a total mass of about 1/10th that of the Milky
Way Galaxy we live in. For comparison, the Milky Way is believed to have
roughly 10 times as much dark matter as ordinary matter. Models of the Big Bang and structure formation have
suggested that such dark galaxies should be very common in the universe, but
none had previously been detected. If the existence of this dark galaxy is
confirmed, it provides strong evidence for the theory of galaxy formation and
poses problems for alternative explanations of dark matter.
There are some galaxies whose velocity profile indicates an absence of
dark matter, such as NGC 3379.[19]
There is evidence that there are 10 to 100 times fewer small galaxies than
permitted by what the dark matter theory of galaxy formation predicts.[20][21]
This is known as the Dwarf galaxy problem.
Main article: Gravitational lens
Strong gravitational lensing as observed by the Hubble Space Telescope in Abell 1689
indicates the presence of dark matter—enlarge the image to see the lensing
arcs.
A gravitational lens is formed when the light from a very
distant, bright source (such as a quasar) is "bent" around a massive object (such as a
cluster
of galaxies) between the source object and the observer. The process is
known as gravitational lensing.
Dark matter affects galaxy clusters as well. X-ray measurements of
hot intracluster gas correspond closely to
Zwicky's observations of mass-to-light ratios for large clusters of nearly 10
to 1. Many of the experiments of the Chandra X-ray Observatory use this
technique to independently determine the mass of clusters.[22]
The galaxy cluster Abell 2029 is composed of thousands of galaxies
enveloped in a cloud of hot gas, and an amount of dark matter equivalent to
more than 1014 Suns. At the center of this cluster is an enormous,
elliptically shaped galaxy that is thought to have been formed from the mergers
of many smaller galaxies.[23]
The measured orbital velocities of galaxies within galactic clusters have been
found to be consistent with dark matter observations.
Another important tool for future dark matter observations is gravitational lensing. Lensing relies on the
effects of general relativity to predict masses without
relying on dynamics, and so is a completely independent means of measuring the
dark matter. Strong lensing, the observed distortion of background galaxies
into arcs when the light passes through a gravitational lens, has been observed
around a few distant clusters including Abell 1689
(pictured right).[24]
By measuring the distortion geometry, the mass of the cluster causing the
phenomena can be obtained. In the dozens of cases where this has been done, the
mass-to-light ratios obtained correspond to the dynamical dark matter
measurements of clusters.
A technique has been developed over the last 10 years called weak gravitational lensing, which looks
at minute distortions of galaxies observed in vast galaxy
surveys due to foreground objects through statistical analyses. By
examining the apparent shear deformation of the adjacent background galaxies,
astrophysicists can characterize the mean distribution of dark matter by
statistical means and have found mass-to-light ratios that correspond to dark
matter densities predicted by other large-scale structure measurements.[25]
The correspondence of the two gravitational lens techniques to other dark
matter measurements has convinced almost all astrophysicists that dark matter
actually exists as a major component of the universe's composition.
The most direct observational evidence to date for dark matter is in a
system known as the Bullet Cluster (two colliding clusters of galaxies). In most regions
of the universe, dark matter and visible material are found together,[26]
as expected because of their mutual gravitational attraction. In the Bullet
Cluster, a collision between two galaxy
clusters appears to have caused a separation of dark matter and baryonic
matter. X-ray observations show that much of the baryonic
matter (in the form of 107– 108 Kelvin[27]
gas, or plasma) in the system is concentrated in the
center of the system. Electromagnetic interactions between passing
gas particles caused them to slow down and settle near the point of impact.
However, weak gravitational lensing observations of the same system show that
much of the mass resides outside of the central region of baryonic gas. Because
dark matter does not interact by electromagnetic forces, it would not have been
slowed in the same way as the X-ray visible gas, so the dark matter components
of the two clusters passed through each other without slowing down
substantially. This accounts for the separation. Unlike the galactic rotation
curves, this evidence for dark matter is independent of the details of Newtonian
gravity, so it is held as direct evidence of the existence of dark matter.[27]
Main article: Cosmic microwave background
radiation
See also: Wilkinson Microwave Anisotropy
Probe
The discovery and confirmation of the cosmic microwave background (CMB) radiation
in 1964[28]
secured the Big
Bang as the best theory of the origin and evolution of the cosmos. According to the Big Bang model, the Universe
expanded from an extremely dense and hot state and continues to expand today. The dense and hot initial state is indicated
by the verses:
وتؤكّد
الآيات
والأحاديث
أنَّ
السّموات والأرض
كانتا رتقاً
عند بداية
الخلق (أَوَلَمْ
يَرَ
الَّذِينَ
كَفَرُوا
أَنَّ السَّمَاوَاتِ
وَالْأَرْضَ
كَانَتَا
رَتْقًا
فَفَتَقْنَاهُمَا
وَجَعَلْنَا
مِنَ الْمَاءِ
كُلَّ شَيْءٍ
حَيٍّ
أَفَلَا
يُؤْمِنُونَ)
[الأنبياء 30].
وأمّا الآن
فهنَّ بسط
وفتق (عمري 2004 : الأرضون
السّبع).
"Do not the Unbelievers see that the Samawat (plural of Sama:
upper part of universe) and the Ardh (lower - interior - part of the Universe) were Ratq (joined,
coupled), before We Fatq (clove asunder, decoupled) them?" (Surat
Al-Anbiyaa No. 21, verse 30).
The Arabic word (Ratq),
implies that at early stages of Universe, matter used to have smeared and
continuous mass distribution with high density, and both matter and radiation
were coupled together. Later on, God
clove them asunder (Fatq): Implying that matter had started clumping and
holding
together to help forming seven distinct firmaments (Samawat) and seven interior
levels of Ardh (very likely to be seven
distinct shells of dark matter). Also, later the universe became transparent,
and matter is no more coupled to radiation (Fatq). Consequently Sama (Upper part of
Universe) and Ardh
(Interior part of Universe) are decoupled; each into seven distinct and
probably concentric spherical shells. The
seven Ardhean (plural of Ardh:
Ground) mentioned by authentic hadiths (Prophet's sayings) are seven
distinct levels. It is possible that
galaxies and clusters of galaxies are distributed over Ardhean. As such, Ardhean represent a major
part of the cosmic dark matter that supports forming gravitationally bounded
galaxies and clusters ([i]).
The hot
state is indicated by:
(ثُمَّ
اسْتَوَى
إِلَى
السَّمَاءِ
وَهِيَ دُخَانٌ
فَقَالَ
لَهَا وَلِلأرْضِ
اِئْتِيَا
طَوْعًا أَوْ
كَرْهًا قَالَتَا
أَتَيْنَا
طَائِعِينَ) [فصّلت
آية 11 ].
(قَالَتَا
أَتَيْنَا
طَائِعِينَ) :
على الفور. (السَّمَاءِ
وَهِيَ
دُخَانٌ) تكوّنت
على الفور.
Allâh says: "Moreover, He
comprehended in His design the Sama (upper part of universe),
and it had been smoke: He said to it and to Ardh (lower - interior - part of the Universe; not earth): 'Come ye,
willingly or unwillingly.' They said: 'We do come, in willing obedience'."
(Surah 41, Verse 11).
At early stages, the Universe was hot and opaque as
indicated by the verse: "and it had been smoke".
Expanding:
- (وَالسَّمَاءَ
بَنَيْنَاهَا
بِأَيْيدٍ
وَإِنَّا
لَمُوسِعُونَ
* وَالأرْضَ
فَرَشْنَاهَا
فَنِعْمَ
الْمَاهِدُونَ * وَمِنْ
كُلِّ شَيْءٍ
خَلَقْنَا
زَوْجَيْنِ
لَعَلَّكُمْ
تَذَكَّرُونَ) ]
49-47 الذّاريات[.
" We have
built The Sama - Firmament - with might, We indeed Have vast power; to
create the vastness of Space and continue to expand it * And We have spread out Ardh - Ground; interior or
lower part of the Universe; the dark matter holding the galaxies -: How excellently We do spread out * And of everything We have created pairs: that ye may receive instruction " (Surah No.
51, verse 47- 49).
Among
the pairs of creation that the last verse can indicate are: Dark matter
and Matter , Dark energy and energy.
لقد
أجمل الفخر
الرّازي
(الرّازي
، م 14، ص 228) معظم آراء
المفسِّرين
في الآية فقال
: (وَإِنَّا
لَمُوسِعُونَ) فيه
وجوه.... وقال
بعض المفسّرين : (وَإِنَّا
لَمُوسِعُونَ) أي
بناءها
فالجملة حاليّة أي: بنيناها
بتوسيعها (الأندلسي
الغرناطي،
النهر الماد
من البحر إلى
المحيط. م 5،
ص 244 ؛ ابن
عطية الأندلسي،
ج 5، ص 181؛ أبي
العباس، ج 6،
ص 192؛ الأندلسي
الغرناطي،
البحر المحيط.
ج 9، ص 560) .
وقيل خلقناها
بقوّة
وقدرة ونحن
قادرون على أن
نوسِّعها
كما نريد (السمرقندي
، ج 3، ص 280؛ الجوزي،
أبي الفرج ، ج 7، ص 212؛ الخطيب،
م 14، ص 529-530).
وقيل أي رفعناها
بقوّة (الزمخشري،
م 4، ص 20؛ الرّازي، م 14، ص 227).
علماً أنّ
تصور سعة
السّماء من
الوضوح والجلاء
ومعروفة
بالضرورة لكلّ
إنسان مبصر،
فإنّ معنى
الاستمرارية
في التوسعة
يتبادر إلى
الذهن من
الآية
(وَالسَّمَاءَ
بَنَيْنَاهَا
بِأَيْيدٍ
وَإِنَّا لَمُوسِعُونَ)
47]
الذاريات[. وليس
في الآية دليل
على حصر
التوسعة على
وصف البناء
عند خلقه،
لأنّ قوله
تعالى
(وَإِنَّا لَمُوسِعُونَ)
مطلق غير مقيد
بزمن أو حال
أو صفة. وكما
هو معلومٌ،
فإنّ صيغة اسم
الفاعل الواردة
(لَمُوسِعُونَ)
تدلُّ على
الاستمرارية
والانعتاق من
الزّمن.
وبالتالي
تفيد الاستمرارية،
فالخالق
سبحانه قادر
وذو سعة يرزق
خلقه في كل
حين، كما أنّه
يوسع بناء
السّماء في كلّ لحظة . . .
السّماء واسعة عندما
خلقها الله
عزّ وجلّ، وإنّ
التوسّع فيها
دائم ومستمر
حتى فناء
الكون يوم
القيامة.
وإنّ
قوله سبحانه:
(وَالأرْضَ
فَرَشْنَاهَا
فَنِعْمَ
الْمَاهِدُونَ)
لهو دليل قاطع
على استمراريّة
فرش الأرض
(الأرضين
السّبع) ومهادها، فإنّ
صيغة اسم
الفاعل
الواردة
(الْمَاهِدُونَ)
تدلُّ على
الاستمرارية
والانعتاق من
الزّمن.
ويظهر ذلك من
خلال الإزاحة
الحمراء التي
تقضي
باستمراريّة
فرش ومهاد
الأرض (الحاضن
الجاذب
للمجرّات)
حاملة معها
المجرّات
التي تتباعد
عن بعضها
البعض بسبب
فرش ومهاد الأرض.
(And We indeed Have vast power and force; to build the Sama
(sky, firmaments, space) via expansion and to keep on its expansion.) (Surah No. 51, verse 47)
(وَالأرْضَ
فَرَشْنَاهَا
فَنِعْمَ
الْمَاهِدُونَ): وَالأرْضَ: تعني
الأرضين
السّبع (seven concentric spherical shells of cold dark matter)؛
الحاضن
الجاذبي
للمجرّات
(عمري 2004 : الأرضون
السّبع).
"And We indeed Have vast power; to
expand it". This interprets as: ALLAH constructs Sama via expansion ([ii]). ALLAH
create and elevate Sama with
vast force and power, and We (ALLAH) are able to expand it as We desire ([iii]). We are
able to expand, as We expand its construction ([iv]).
Since then, many further measurements of the CMB have also supported and
constrained this theory, perhaps the most famous being the NASA Cosmic Background
Explorer (COBE).
COBE found a residual temperature of 2.726 K and in 1992 detected for the first
time the fluctuations (anisotropies) in the CMB, at a level of about one part
in 105.[29]
This is referred to by the verse:
(الَّذِي
خَلَقَ سَبْعَ
سَمَاوَاتٍ
طِبَاقًا مَا
تَرَى فِي
خَلْقِ
الرَّحْمَانِ
مِنْ
تَفَاوُتٍ
فَارْجِعْ الْبَصَرَ
هَلْ تَرَى
مِنْ فُطُورٍ *
ثُمَّ
ارْجِعْ
الْبَصَرَ
كَرَّتَيْنِ
يَنقَلِبْ
إِلَيْكَ
الْبَصَرُ
خَاسِئًا
وَهُوَ
حَسِيرٌ) [
الملك 3-4].
تشير الآية
إلى انعدام
إمكانية
الرؤية
البصرية (Optical) لأيّ
تفاوت.
(He
Who created the seven Samawat (sky, Firmament) one above another: no want of proportion wilt
thou see in the Creation of (Allah) Most Gracious. So turn thy vision again:
seest thou any flaw? * Again turn thy vision a second time: (thy) vision will
come back to thee dull and discomfited, in a state worn out.) (S. 67, V. 3-4)
The
verse declares that it is impossible to detect any optical variations from
Samaa'. Today, the CMB radiation is very
cold, only 2.725° above absolute zero,
thus this radiation shines primarily in the microwave portion of the electromagnetic spectrum,
and is invisible to the naked eye.
During the following decade, CMB anisotropies were further investigated
by a large number of ground-based and balloon experiments. The primary goal of
these experiments was to measure the angular scale of the first acoustic peak
of the power spectrum of the anisotropies, for which COBE
did not have sufficient resolution. In 2000–2001, several experiments, most
notably BOOMERanG[30]
found the Universe to be almost spatially flat by measuring the typical angular
size (the size on the sky) of the anisotropies. During the 1990s, the first
peak was measured with increasing sensitivity and by 2000 the BOOMERanG
experiment reported that the highest power fluctuations occur at scales of
approximately one degree. These measurements were able to rule out cosmic
strings as the leading theory of cosmic structure formation, and suggested cosmic
inflation was the right theory.
(ثُمَّ
اسْتَوَى
إِلَى
السَّمَاءِ
وَهِيَ دُخَانٌ
فَقَالَ
لَهَا
وَلِلْأَرْضِ
ائْتِيَا
طَوْعًا أَوْ
كَرْهًا
قَالَتَا
أَتَيْنَا
طَائِعِينَ * فَقَضَاهُنَّ
سَبْعَ
سَمَاوَاتٍ
فِي يَوْمَيْنِ) [فصّلت
آية 11-12 ].
Allâh says:
"Moreover, He comprehended in His design the Sama
(upper part of universe), and it had been
smoke: He said to it and to Ardh (lower - interior
- part of the Universe; not earth): 'Come ye, willingly or unwillingly.' They
said: 'We do come, in willing obedience'. So He completed them as seven firmaments in two Days
(periods) …" (Surah 41,
Verses 11-12).
- (وَالسَّمَاءَ
بَنَيْنَاهَا
بِأَيْيدٍ
وَإِنَّا
لَمُوسِعُونَ
* وَالأرْضَ
فَرَشْنَاهَا
فَنِعْمَ
الْمَاهِدُونَ * وَمِنْ
كُلِّ شَيْءٍ
خَلَقْنَا
زَوْجَيْنِ
لَعَلَّكُمْ
تَذَكَّرُونَ) ]
49-47 الذّاريات[.
" We have
built The Sama - Firmament - with might, We indeed Have vast power; to create the
vastness of Space and continue to expand it * And We have spread out Ardh - Ground; interior or
lower part of the Universe; the dark matter holding the galaxies -: How excellently We do spread out * And of everything We have created pairs: that ye may receive instruction " (Surah No.
51, verse 47- 49).
Also
mong the pairs of creation that the last verse can indicate are: Dark matter
and Matter , Dark energy and energy.
(أَأَنْتُمْ
أَشَدُّ
خَلْقًا أَمْ
السَّمَاءُ
بَنَاهَا *
رَفَعَ
سَمْكَهَا
فَسَوَّاهَا)
[النّازعات 27-28]
[27] What! Are ye the more difficult to
create or the Samaa (Firmaments) (above)? (Allah) hath constructed it: [28] On
high hath He raised its canopy, and He hath given it order and perfection.
A number of ground-based interferometers
provided measurements of the fluctuations with higher accuracy over the next
three years, including the Very
Small Array, Degree Angular Scale Interferometer
(DASI) and the Cosmic Background Imager (CBI). DASI made
the first detection of the polarization of the CMB[31]
[32]
and the CBI provided the first E-mode polarization spectrum with compelling
evidence that it is out of phase with the T-mode spectrum.[33]
COBE's successor, the Wilkinson Microwave Anisotropy
Probe (WMAP) has provided the most detailed measurements of (large-scale) anisotropies
in the CMB as of 2009.[34]
WMAP's measurements played the key role in establishing the current Standard
Model of Cosmology, namely the Lambda-CDM
model, a flat universe dominated by dark energy,
supplemented by dark matter and atoms with density fluctuations seeded by a Gaussian, adiabatic,
nearly scale invariant process. The basic properties of
this universe are determined by five numbers: the density of matter, the
density of atoms, the age of the universe (or equivalently, the Hubble
constant today), the amplitude of the initial fluctuations, and their scale
dependence. This model also requires a period of cosmic inflation. The WMAP
data in fact ruled out several more complex cosmic inflation models, though
supporting the one in Lambda-CDM amongst others.
In summary, a successful Big Bang cosmology theory must fit with all
available astronomical observations (known as the concordance model), in
particular the CMB. In cosmology the CMB is explained as relic
radiation from the big bang, originally at thousands of degrees kelvin but red shifted
down to microwave by the expansion of the universe over the last thirteen
billion years. The anisotropies in the CMB are explained as acoustic oscillations in the photon-baryon plasma
(prior to the emission of the CMB after the photons decouple from the baryons
at 379,000 years after the Big Bang) whose restoring force is gravity.[35]
Ordinary (baryonic)
matter interacts strongly with radiation whereas, by definition, dark matter
does not - though both affect the oscillations by their gravity - so the two forms
of matter will have different effects. The power spectrum of the CMB
anisotropies shows a large main peak and smaller successive peaks, resolved
down to the third peak as of 2009.e.g.[34].
The main peak tells you most about the density of baryonic matter and the third
peak most about the density of dark matter (see Cosmic microwave background
radiation#Primary anisotropy).
Main article: Baryon acoustic oscillations
The acoustic oscillations in the early universe (see the previous
section) leave their imprint in the visible matter by Baryon Acoustic
Oscillation (BAO) clustering, in a way that can be measured with sky surveys
such as the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey.[36]
These measurements are consistent with those of the CMB derived from the WMAP
spacecraft and further constrain the Lambda CDM model and dark matter. Note
that the CMB data and the BAO data measure the acoustic oscillations at very
different distance scales.[35]
This is
referred to by the verse:
(وَالسَّمَاءِ
ذَاتِ
الْحُبُكِ)
(الذاريات س 51 آية 7).
[7] (By the Samaa (Sky) with (its)
HUBUK) (Surah 51, verse 7).
The meanings of the Arabic
word Hubuk:
Some of the prophet
companions, may Allah be pleased with them, said that the Arabic word Hubuk
means: Beauty, magnificence, integrity and completeness. Some other companions have said: Intense,
transparent, with a vast expansion, and decorated with beautiful stars.
Another meaning is taken
from the Hadith: (It is a deceiver and a liar behind you who claims to be God,
although his head from behind is Hubuk Hubuk Hubuk). Which means that his hair from behind is
wrinkly. This is similar to surface of
steady water (with harmonious oscillations), or surface of sand becoming
wrinkly and having paths when wind passes by.
The resulting surface waves are created by wind.
Helmet, which protect the
Soldier head used to be manufactured of huge number of small iron rings. It looks Hubuk: Wrinkled, and shows tracks.
Some of the above meanings
of the word Hubuk refer to the new observations of the cosmic microwave
background radiation showing that the early universe resounded with harmonious
oscillations.
For the
detailed physics, see the following link (Cosmic Symphony):
حبيك
البيض للرأس
طرائق حديده. وفي صفة
الدّجال رأسه
حبك: أي شعر
رأسه متكسّر
من الجعودة، مثل
الماء
السّاكن أو
الرّمل إذا
هبّت عليهما
الرّيح
فيتجعّدان
ويصيران
طرائق. والحبك
تكسّر كل شيء
كالرملة إذا
مرّت عليها الرّيح،
أو الماء
القائم إذا
مرّت به
الرّيح.
تنسجم
هذه المعاني
اللّغويّة مع
اكتشاف علماء
الكون الّذي
أكّد أنَّ
الفوتونات
التي تتشتّت (scattered) عند
اصطدامها مع
الدّقائق
الأوليّة
تحدث اضطراباً
قليلاً في
الكثافة
ينتشر كأمواج
صوتيّة محدثة
تضاغطات (compressions)
وتخلخلات (rarefactions).
التضاغطات
تسخّن الغاز،
بينما تبرّده
التّخلخلات.
وبالتالي
فإنّ أيّ اضطراب
في الكون
المبكر يبقى
ظاهراً
كتغاير بسيط
في درجة حرارة
إشعاع
الخلفية
الكوني.
Main article: Type Ia supernova
Main article: Lyman alpha forest
In astronomical spectroscopy, the Lyman
alpha forest is the sum of absorption lines arising from the Lyman
alpha transition of the neutral hydrogen in the
spectra of distant galaxies
and quasars.
Observations of the Lyman alpha forest can also be used to constrain
cosmological models.[38]
These constraints are again in agreement with those obtained from WMAP data.
Structure formation
3D map of the large-scale distribution of dark matter, reconstructed
from measurements of weak gravitational lensing with the Hubble Space Telescope.
Main article: structure formation
Dark matter is crucial to the Big Bang
model of cosmology as a component which corresponds directly to measurements of
the parameters associated with Friedmann cosmology
solutions to general relativity. In particular, measurements
of the cosmic microwave background
anisotropies correspond to a cosmology where much of the matter interacts with photons more
weakly than the known forces that couple light interactions to
baryonic matter. Likewise, a significant amount of non-baryonic, cold
matter is necessary to explain the large-scale structure of the
universe.
Observations suggest that structure formation in the universe proceeds
hierarchically, with the smallest structures collapsing first and followed by
galaxies and then clusters of galaxies. As the structures collapse in the
evolving universe, they begin to "light up" as the baryonic matter
heats up through gravitational contraction and the object approaches hydrostatic pressure balance. Ordinary baryonic
matter had too high a temperature, and too much pressure left over from the Big
Bang to collapse and form smaller structures, such as stars, via the Jeans
instability. Dark matter acts as a compactor of structure. This model not
only corresponds with statistical surveying of the visible structure in the
universe but also corresponds precisely to the dark matter predictions of the
cosmic microwave background.
This bottom up model of structure formation requires something
like cold dark matter to succeed. Large computer simulations of billions of
dark matter particles have been used[39]
to confirm that the cold dark matter model of structure formation is consistent
with the structures observed in the universe through galaxy surveys, such as
the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey, as well as
observations of the Lyman-alpha forest. These studies have been
crucial in constructing the Lambda-CDM
model which measures the cosmological parameters, including the fraction of
the universe made up of baryons and dark matter.
Although dark matter was inferred by gravitational lensing in August 2006,[27]
many aspects of dark matter remain speculative. The DAMA/NaI
experiment and its successor DAMA/LIBRA have claimed to directly detect dark matter
passing through the Earth, though most scientists remain skeptical since
negative results of other experiments are (almost) incompatible with the DAMA
results if dark matter consists of neutralinos.
Estimated
distribution of dark matter and dark energy in the universe
The dark matter component would have much more mass than the
"visible" component of the universe.[40]
Only about 4.6% of the mass of Universe is ordinary matter. About 23% is
thought to be composed of dark matter. The remaining 72% is thought to consist
of dark
energy, an even stranger component, distributed diffusely in space.[41]
Some hard-to-detect baryonic matter is believed to make a
contribution to dark matter but would constitute only a small portion.[42][43]
Determining the nature of this missing mass is one of the most important
problems in modern cosmology and particle
physics. It has been noted that the names "dark matter" and
"dark energy" serve mainly as expressions of human ignorance.
At present, the most common view is that dark matter is primarily
non-baryonic, made of one or more elementary particles other than the usual electrons, protons, neutrons, and
known neutrinos.
The most commonly proposed particles are axions, sterile
neutrinos, and WIMPs (Weakly Interacting
Massive Particles, including neutralinos).
None of these are part of the standard
model of particle physics, but they can arise in extensions
to the standard model. Many supersymmetric models naturally give rise to stable
dark matter candidates in the form of the Lightest Supersymmetric Particle
(LSP). Heavy, sterile neutrinos exist in extensions to the standard model that
explain the small neutrino mass through the seesaw
mechanism.
Data from a number of lines of evidence, including galaxy rotation curves, gravitational
lensing, structure formation, and the fraction of baryons in clusters and the
cluster abundance combined with independent evidence for the baryon density,
indicate that 85-90% of the mass in the universe does not interact with the electromagnetic force. This "nonbaryonic
dark matter" is evident through its gravitational effect.
(فَلَا
أُقْسِمُ
بِمَا
تُبْصِرُونَ *
وَمَا لَا
تُبْصِرُونَ)
(الحاقة س 69،
الآيتان 38-39)
(So I do call to witness
what ye see * And what ye see not,) (S. 69, V. 38-39)
Historically, three categories of
nonbaryonic dark matter have been postulated[44]:
·
Hot
dark matter – nonbaryonic particles that move ultrarelativistically[45]
·
Warm
dark matter – nonbaryonic particles that move relativistically
·
Cold
dark matter – nonbaryonic particles that move non-relativistically[46]
Davis et
al. wrote in 1985:
Candidate particles can
be grouped into three categories on the basis of their effect on the fluctuation spectrum (Bond et al. 1983). If the
dark matter is composed of abundant light particles which remain relativistic
until shortly before recombination, then it may be termed "hot". The
best candidate for hot dark matter is a neutrino ... A second possibility is
for the dark matter particles to interact more weakly than neutrinos, to be
less abundant, and to have a mass of order 1eV. Such particles are termed "warm
dark matter", because they have lower thermal velocities than massive
neutrinos ... there are at present few candidate particles which fit this
description. Gravitinos and photinos have been suggested (Pagels and
Primack 1982; Bond, Szalay and Turner 1982) ... Any particles which became
nonrelativistic very early, and so were able to diffuse a negligible distance,
are termed "cold" dark matter (CDM). There are many candidates for
CDM including supersymmetric particles.[47]
Hot dark matter consists of particles that travel with relativistic velocities. One kind of hot dark
matter is known, the neutrino. Neutrinos have a very small mass, do not interact
via either the electromagnetic or the strong nuclear force and are therefore very
difficult to detect. This is what makes them appealing as dark matter. However,
bounds on neutrinos indicate that ordinary neutrinos make only a small
contribution to the density of dark matter.
Hot dark matter cannot explain how individual galaxies formed from the
Big Bang. The microwave background radiation as
measured by the COBE
and WMAP spacecraft,
while incredibly smooth, indicates that matter has clumped on very small
scales. Fast moving particles, however, cannot clump together on such small
scales and, in fact, suppress the clumping of other matter. Hot dark matter,
while it certainly exists in our universe in the form of neutrinos, is
therefore only part of the story.
The Concordance Model requires that, to explain structure in the
universe, it is necessary to invoke cold (non-relativistic) dark matter. Large
masses, like galaxy-sized black holes can be ruled out on the basis of gravitational lensing data. However, tiny
black holes are a possibility.[48]
Other possibilities involving normal baryonic matter include brown
dwarfs or perhaps small, dense chunks of heavy elements; such objects are
known as massive compact halo objects, or
"MACHOs". However, studies of big bang nucleosynthesis have convinced
most scientists that baryonic matter such as MACHOs cannot be more than a small
fraction of the total dark matter.
If the dark matter within our galaxy is made up of Weakly Interacting Massive
Particles (WIMPs), then a large number must pass through the Earth each
second. There are many experiments currently running, or planned, aiming to
test this hypothesis by searching for WIMPs. Although WIMPs are a more popular
dark matter candidate[5],
there are also experiments searching for other particle candidates such as axions. It is also
possible that dark matter consists of very heavy hidden
sector particles which only interact with ordinary matter via gravity.
These experiments can be divided into two classes: direct detection
experiments, which search for the scattering of dark matter particles off
atomic nuclei within a detector; and indirect detection, which look for the
products of WIMP annihilations.[49]
An alternative approach to the detection of WIMPs in nature is to
produce them in the laboratory. Experiments with the Large Hadron Collider (LHC) may be able to
detect WIMPs; because a WIMP has negligible interactions with matter, it may be
detected indirectly as (large amounts of) missing energy and momentum which
escape the LHC detectors, provided all the other (non-negligible) collision
products are detected.[50]
These experiments could show that WIMPs can be created, but it would still
require a direct detection experiment to show that they exist in sufficient
numbers in the galaxy, to account for dark matter.[51]
Direct detection experiments operate in deep underground laboratories to
reduce the background from cosmic rays. These include: the Soudan mine;
the SNOLAB underground
laboratory at Sudbury, Ontario (Canada); the Gran Sasso National Laboratory
(Italy); the Boulby Underground Laboratory (UK); and the Deep Underground
Science and Engineering Laboratory, South Dakota.
The majority of present experiments use one of two detector
technologies: cryogenic detectors, operating at temperatures below 100mK, detect
the heat produced when a particle hits an atom in a crystal absorber
such as germanium.
Noble liquid
detectors detect the flash of scintillation light produced by a particle
collision in liquid xenon
or argon.
Cryogenic detector experiments include: the Cryogenic Dark Matter Search (CDMS), CRESST, EDELWEISS,
and EURECA. Noble liquid experiments
include ZEPLIN, XENON,
ArDM, WARP and LUX. Both of these detectors are
capable of distinguishing background particles which scatter off electrons,
from dark matter particles which scatter off nuclei.
The DAMA/NaI,
DAMA/LIBRA
experiments have detected an annual modulation in the event rate, which they
claim is due to dark matter particles. (As the Earth orbits the Sun, the
velocity of the detector relative to the dark matter halo will vary by a small
amount depending on the time of year). This claim is so far unconfirmed and
difficult to reconcile with the negative results of other experiments assuming
that the WIMP scenario is correct.[52]
Other direct dark matter experiments include DRIFT, MIMAC,
PICASSO, and the DMTPC.
On 17 December 2009 CDMS researchers reported two possible WIMP
candidate events. They estimate that the probability that these events are due
to a known background (neutrons or misidentified beta or gamma events) is 23%,
and conclude "this analysis cannot be interpreted as significant evidence
for WIMP interactions, but we cannot reject either event as signal."[53]
Indirect detection experiments
Indirect detection experiments search for the products of WIMP
annihilation. If WIMPs are majorana
particles (the particle and antiparticle are the same) then two WIMPs
colliding would annihilate to produce gamma rays,
and particle-antiparticle pairs. This could produce a significant number of
gamma rays, antiprotons
or positrons
in the galactic halo. The detection of such a signal is not conclusive evidence
for dark matter, as the backgrounds from other sources are not fully
understood.[5][49]
The EGRET
gamma ray telescope observed an excess of gamma rays, but scientists concluded
that this was most likely a systematic effect.[54]
The Fermi Gamma-ray Space Telescope,
launched June 11, 2008, is searching for gamma rays events from dark matter
annihilation.[55].
At higher energies, the ground-based MAGIC
gamma-ray telescope has set limits to the existence of dark matter in dwarf
spheroidal galaxies [56]
and clusters of galaxies [57].
The PAMELA
payload (launched 2006) has detected an excess of positrons, which could be
produced by dark matter annihilation, but may also come from pulsars. No excess
of anti-protons has been observed.[58]
WIMPs passing through the Sun or Earth
are likely to scatter off atoms and lose energy. This way a large population of
WIMPs may accumulate at the center of these bodies, increasing the chance that
two will collide and annihilate. This could produce a distinctive signal in the
form of high energy neutrinos originating from the center of the Sun or Earth.
It is generally considered that the detection of such a signal would be the
strongest indirect proof of WIMP dark matter.[5]
High energy neutrino telescopes such as AMANDA, IceCube and ANTARES are searching for this.
Dark matter and dark energy represent the most popular theory among
physicists and cosmologists to explain the various anomalies that Zwicky
and subsequent researchers have observed. However, direct observational
evidence of dark matter has remained elusive. A minority of scientists have
suggested that the existence of a vast amount of undetected matter is less
likely than the possibility that current theories of gravitation
are simply incomplete (much like the now discredited theory of ether, once thought to be the medium through
which light travels, but overturned in the early 20th century,
or the chemical substance phlogiston). Here is a list of some of the alternative
theories to dark matter and dark energy which have been proposed.
Proposed alternatives to physical dark matter particles have been to
suppose that the observed inconsistencies are due to an incomplete understanding
of gravitation
or dynamics. The observations require that the
gravitational force is stronger than the Newtonian approximation at great
distances or in weak fields; this model is called modified gravity (MOG).
Another proposed model is modified Newtonian dynamics (MOND),
which adjusts Newton's laws at small acceleration. However,
constructing a relativistic MOND theory has been troublesome,
and it is not clear how the theory can be reconciled with gravitational lensing measurements of the
deflection of light around galaxies. The leading relativistic MOND theory,
proposed by Jacob Bekenstein in 2004, is called TeVeS for
Tensor-Vector-Scalar and solves many of the problems of earlier attempts.
However, a study in August 2006 reported an observation of a pair of colliding
galaxy clusters whose behavior, it was claimed, was not compatible with any
current modified gravity theories.[27]
In 2007, John W. Moffat proposed a MOG theory based
on the Nonsymmetric Gravitational Theory
(NGT) that claims to account for the behavior of colliding galaxies.[59]
This theory still requires the presence of non-relativistic neutrinos, other
candidates for (cold) dark matter, to work. A quantity EG
[60]
probing General Relativity (GR) on large scales (a
hundred billion times the size of the solar system) for the first time has been
measured with data from the Sloan Digital Sky Survey to be[61]
consistent with GR, GR plus Lambda
CDM and the extended form of GR known as f(R)
theory. A particular TeVeS model predicting EG = 0.22
is ruled out. This determination of EG within
~16% should improve to around 1% with the next generation of sky surveys and
may rule out f(R) theory which occupies the lower end
of the 16% error band; in any case, if more research shows its robustness it
may be a significant observational constraint on the parameter space of
modified gravity theory.
|
The section Quantum mechanical explanations may be too technical for most readers to understand.
Please improve
this section to make it accessible to
non-experts, without removing the technical details. (October 2009) |
Another class
of theories attempts to reconcile gravitation
with quantum mechanics and obtain corrections to the
conventional gravitational interaction. In scalar-tensor theories, scalar
fields like the Higgs
field couple to the curvature given through the Riemann tensor or
its traces. In many such theories, the scalar field equals the inflaton field,
which is needed to explain the inflation
of the universe after the Big Bang, as the dominating factor of the quintessence or Dark Energy.
Using an approach based on the exact renormalization group,
M. Reuter and H. Weyer have shown[62]
that Newton's constant and the cosmological constant can be scalar functions
on spacetime if one associates renormalization scales to the points of
spacetime. Some M-Theory
cosmologists also propose that multi-dimensional forces from outside the
visible universe have gravitational effects on the visible universe meaning
that dark matter is not necessary for a unified theory of cosmology.
Neutrinos
Main article: Neutrino
It has been suggested that lensing data of galaxy cluster Abell 1689
supports a light fermionic dark matter in the mass range of few eV. The best
case is provided by neutrinos of about 1.5 eV. Active (left-handed) ones alone account for some 9.5%
dark matter, so sterile (right-handed) ones with similar mass are
needed to achieve about 19%. If correct, this would lead back to the hot
dark matter scenario, which requires a new explanation of structure
formation.[63]
Dark fluid
Main article: Dark fluid
The dark
fluid theory proposes that the attractive gravitational effects attributed
to dark matter are in fact a side-effect of dark energy.
Main article: Dark matter in fiction
Mentions of dark matter occur in some video games and other works of
fiction. In such cases, it is usually attributed extraordinary physical or
magical properties. Such descriptions are often inconsistent with the
properties of dark matter proposed in physics and cosmology.
References
1.
^
Mark J Hadley (2007) "Classical Dark
Matter"
2.
^
Hinshaw, Gary F. (January 29, 2010). "What is the
universe made of?". Universe 101. NASA
website. http://map.gsfc.nasa.gov/universe/uni_matter.html.
Retrieved 2010-03-17.
3.
^
Tom Siegfried. "Hidden
Space Dimensions May Permit Parallel Universes, Explain Cosmic Mysteries".
The
4.
^
Merritt,
D.; Bertone, G. (2005). "Dark Matter Dynamics and Indirect
Detection". Modern Physics Letters A 20: 1021-1036.
5.
^ a
b
c
d
e
f
g
Bertone, G; Hooper, D; Silk, J (2005). "Particle dark matter: evidence,
candidates and constraints". Physics Reports 405: 279. doi:10.1016/j.physrep.2004.08.031.
arXiv:hep-ph/0404175.
6.
^
Zwicky, F. (1933). "Die
Rotverschiebung von extragalaktischen Nebeln". Helvetica Physica
Acta 6: 110–127. http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1933AcHPh...6..110Z. \ See also Zwicky, F. (1937).
"On the Masses of Nebulae and of Clusters of Nebulae". Astrophysical
Journal 86: 217. doi:10.1086/143864.
7.
^
Ken Freeman, Geoff McNamara (2006). In
Search of Dark Matter. Birkhäuser. p. 37. ISBN 0387276165. http://books.google.com/books?id=C2OS1kmQ8JIC&pg=PA37&dq=%22rotation+curves+of+galaxies+%22+date:2000-2010&lr=&as_brr=0&as_pt=ALLTYPES.
8.
^
V. Rubin, W. K. Ford, Jr (1970). "Rotation of the Andromeda Nebula from a
Spectroscopic Survey of Emission Regions". Astrophysical Journal 159:
379. doi:10.1086/150317.
9.
^
V. Rubin, N. Thonnard, W. K. Ford, Jr, (1980). "Rotational Properties of
21 Sc Galaxies with a Large
10.
^
de Blok, W. J. G., McGaugh, S. S., Bosma, A. and Rubin, V. C. (may 2001). "Mass Density
Profiles of Low Surface Brightness Galaxies". The Astrophysical
Journal 552: L23-L26. doi:10.1086/320262. http://adsabs.harvard.edu/abs/2001ApJ...552L..23D.
11.
^
Salucci, P. and Borriello, A. (2003). J. Trampeti and J. Wess. ed. The Intriguing
Distribution of Dark Matter in Galaxies. Lecture Notes in Physics,
Berlin Springer Verlag. 616. pp. 66–77. http://adsabs.harvard.edu/abs/2003LNP...616...66S.
12.
^
Koopmans, L. V. E. and Treu, T. (feb 2003). "The Structure
and Dynamics of Luminous and Dark Matter in the Early-Type Lens Galaxy of
0047-281 at z = 0.485". The Astrophysical Journal 583:
606–615. doi:10.1086/345423. arXiv:astro-ph/0205281. http://adsabs.harvard.edu/abs/2003ApJ...583..606K.
13.
^
Dekel, A. et al (sep 2005). "Lost and found
dark matter in elliptical galaxies". Nature 437:
707–710. doi:10.1038/nature03970. arXiv:astro-ph/0501622. http://adsabs.harvard.edu/abs/2005Natur.437..707D.
14.
^
Nature 463, 203-206 (14 January 2010) | doi:10.1038/nature08640, Bulgeless
dwarf galaxies and dark matter cores from supernova-driven outflows
15.
^
Faber, S.M. and Jackson, R.E. (March 1976). "Velocity dispersions and
mass-to-light ratios for elliptical galaxies". Astrophysical Journal
204: 668–683. doi:10.1086/154215.
16.
^
Rejkuba, M., Dubath, P., Minniti, D. and Meylan, G. (may 2008). E. Vesperini,
M. Giersz, and A. Sills. ed. Masses and M/L
Ratios of Bright Globular Clusters in NGC 5128. IAU Symposium. 246.
pp. 418–422. doi:10.1017/S1743921308016074.
http://adsabs.harvard.edu/abs/2008IAUS..246..418R.
17.
^
Weinberg, M.D. and Blitz, L. (April 2006). "A Magellanic Origin for the
Warp of the Galaxy". The Astrophysical Journal 641: L33–L36.
doi:10.1086/503607. arXiv:astro-ph/0601694.
18.
^
Minchin, R.et al. (March 2005). "A Dark Hydrogen Cloud in the Virgo
Cluster". The Astrophysical Journal 622: L21–L24. doi:10.1086/429538.
19.
^
Ciardullo, R., Jacoby, G. H. and Dejonghe, H. B. (sep 1993). "The radial
velocities of planetary nebulae in NGC 3379". The Astrophysical
Journal 414: 454–462. doi:10.1086/173092. http://adsabs.harvard.edu/abs/1993ApJ...414..454C.
20.
^
Mateo, M. L. (1998). "Dwarf Galaxies
of the Local Group". Annual Review of Astronomy and Astrophysics
36: 435–506. doi:10.1146/annurev.astro.36.1.435.
arXiv:astro-ph/9810070. http://adsabs.harvard.edu/abs/1998ARA%26A..36..435M.
21.
^
Moore, Ben; Ghigna, Sebastiano; Governato, Fabio; Lake, George; Quinn, Thomas;
Stadel, Joachim; Tozzi, Paolo (1999). "Dark Matter
Substructure within Galactic Halos". Astrophysical Journal Letters
524: L19–L22. doi:10.1086/312287. http://adsabs.harvard.edu/abs/1999ApJ...524L..19M.
22.
^
Vikhlinin, A. et al. (apr 2006). "Chandra Sample
of Nearby Relaxed Galaxy Clusters: Mass, Gas Fraction, and Mass-Temperature
Relation". The Astrophysical Journal 640: 691–709. doi:10.1086/500288. arXiv:astro-ph/0507092. http://adsabs.harvard.edu/abs/2006ApJ...640..691V.
23.
^
"Abell 2029:
Hot News for Cold Dark Matter". Chandra X-ray Observatory collaboration.
11 June 2003. http://chandra.harvard.edu/photo/2003/abell2029/.
24.
^
25.
^
Refregier, A. (September 2003). "Weak gravitational lensing by large-scale
structure". Annual Review of Astronomy and Astrophysics 41:
645–668. doi:10.1146/annurev.astro.41.111302.102207.
26.
^
Massey,
R.; Rhodes, J; Ellis, R; Scoville, N; Leauthaud, A; Finoguenov, A; Capak,
P; Bacon, D et al. (January 18, 2007). "Dark matter maps reveal
cosmic scaffolding". Nature 445 (7125): 286–290. doi:10.1038/nature05497. PMID 17206154.
27.
^ a
b
c
d
Clowe, D.; Bradač, Maruša; Gonzalez, Anthony H.; Markevitch, Maxim;
Randall, Scott W.; Jones, Christine; Zaritsky, Dennis (September 2006). "A
direct empirical proof of the existence of dark matter". Astrophysical
Journal Letters 648: 109–113. doi:10.1086/508162. arXiv:astro-ph/0608407.
28.
^
Penzias, A.A.; Wilson, R. W. (1965). "A Measurement of
Excess Antenna Temperature at 4080 Mc/s". Astrophysical Journal 142: 419.
doi:10.1086/148307. http://adsabs.harvard.edu/abs/1965ApJ...142..419P.
29.
^
Boggess, N.W., et al.; Mather, J. C.; Weiss, R.; Bennett, C. L.; Cheng,
E. S.; Dwek, E.; Gulkis, S.; Hauser, M. G. et al. (1992). "The COBE
30.
^
Melchiorri, A.; et al. (2000). "A Measurement of Ω from the
North American Test Flight of Boomerang". Astrophysical Journal 536 (2):
L63–L66. doi:10.1086/312744.
31.
^
Leitch, E. M. et al. (dec 2002). "Measurement of
polarization with the Degree Angular Scale Interferometer". Nature
420: 763–771. arXiv:astro-ph/0209476. http://adsabs.harvard.edu/abs/2002Natur.420..763L.
32.
^
Leitch, E. M. et al. (may 2005). "Degree Angular
Scale Interferometer 3 Year Cosmic Microwave Background Polarization
Results". The Astrophysical Journal 624: 10–20. doi:10.1086/428825. arXiv:astro-ph/0409357. http://adsabs.harvard.edu/abs/2005ApJ...624...10L.
33.
^
Readhead, A.C.S.; et al. (2004). "Polarization
Observations with the Cosmic Background Imager". Science
306 (5697): 836–844. doi:10.1126/science.1105598.
arXiv:astro-ph/0409569. PMID 15472038. http://adsabs.harvard.edu/abs/2004Sci...306..836R.
34.
^ a
b
Hinshaw, G. et al. (WMAP Collaboration). (feb 2009). "Five-Year
Wilkinson Microwave Anisotropy Probe Observations: Data Processing, Sky Maps,
and Basic Results". The Astrophysical Journal Supplement 180:
225–245. doi:10.1088/0067-0049/180/2/225.
arXiv:0803.0732 astro-ph/ 0803.0732. http://adsabs.harvard.edu/abs/2009ApJS..180..225H.
35.
^ a
b
c
Komatsu, E. et al. (feb 2009). "Five-Year
Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation".
The Astrophysical Journal Supplement 180: 330–376. doi:10.1088/0067-0049/180/2/330.
arXiv:0803.0547. http://adsabs.harvard.edu/abs/2009ApJS..180..330K.
36.
^
Percival, W. J. et al (nov 2007). "Measuring the
Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF
Galaxy Redshift Survey". Monthly Notices of the Royal Astronomical
Society 381: 1053–1066. doi:10.1111/j.1365-2966.2007.12268.x.
http://adsabs.harvard.edu/abs/2007MNRAS.381.1053P.
37.
^
Kowalski, M. et al (oct 2008). "Improved
Cosmological Constraints from New, Old, and Combined Supernova Data Sets".
The Astrophysical Journal 686: 749–778. doi:10.1086/589937. arXiv:0804.4142. http://adsabs.harvard.edu/abs/2008ApJ...686..749K.
38.
^
Viel, M. and
39.
^
Springel, V. et al. (jun 2005). "Simulations of
the formation, evolution and clustering of galaxies and quasars". Nature
435: 629–636. doi:10.1038/nature03597. arXiv:astro-ph/0504097. http://adsabs.harvard.edu/abs/2005Natur.435..629S.
40.
^
"Five Year Results
on the Oldest Light in the Universe". NASA. http://map.gsfc.nasa.gov/m_mm/mr_limits.html. , using the WMAP dataset
41.
^ a
b
Cline, David B. (March 2003). "The
Search for Dark Matter". Scientific American. http://www.sciam.com/article.cfm?id=the-search-for-dark-matte.
42.
^
Freese, Katherine. Death of Stellar Baryonic Dark Matter Candidates. arXiv:astro-ph/0007444.
43.
^
Freese, Katherine. Death of Stellar Baryonic Dark Matter. arXiv:astro-ph/0002058.
44.
^
Silk, Joseph (1980). The Big Bang (1989 ed.).
45.
^
Umemura, Masayuki; Satoru Ikeuchi (1985). "Formation of Subgalactic
Objects within Two-Component Dark Matter". Astrophysical Journal 299:
583–592. doi:10.1086/163726.
46.
^
Vittorio, N.; J. Silk (1984). "Fine-scale anisotropy of the cosmic
microwave background in a universe dominated by cold dark matter". Astrophysical
Journal, Part 2 – Letters to the Editor 285: L39–L43. doi:10.1086/184361.
47.
^
48.
^
49.
^ a
b
Bertone, G. (2005). "Dark matter dynamics and indirect detection". Modern
Physics Letters A 20: 1021–1036. doi:10.1142/S0217732305017391.
arXiv:astro-ph/0504422.
50.
^
Kane, G. and Watson, S. (2008). "Dark Matter and LHC:. what is the
Connection?". Modern Physics Letters A 23: 2103–2123. doi:10.1142/S0217732308028314.
51.
^
Kane, G.; Watson, Scott (2008). "Dark Matter and LHC: What is the
Connection?". Modern Physics Letters A 23: 2103–2123. doi:10.1142/S0217732308028314.
arXiv:0807.2244.
52.
^
R. Bernabei et al. (2008). "First
results from DAMA/LIBRA and the combined results with DAMA/NaI". Eur.
Phys. J. C 56: 333–355. doi:10.1140/epjc/s10052-008-0662-y.
http://arxiv.org/abs/0804.2741.
53.
^
The CDMS Collaboration, Z. Ahmed, et al (2009). "Results from the Final
Exposure of the CDMS II Experiment". arXiv:0912.3592.
54.
^
Stecker, F.W.; Hunter, S; Kniffen, D (2008). "The likely cause of the
EGRET GeV anomaly and its implications". Astroparticle Physics 29:
25–29. doi:10.1016/j.astropartphys.2007.11.002.
arXiv:0705.4311.
55.
^
Atwood, W.B.; Abdo, A. A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson,
M.; Baldini, L.; Ballet, J. et al. (2009). "The large area
telescope on the Fermi Gamma-ray Space Telescope Mission". Astrophysical
Journal 697: 1071–1102. doi:10.1088/0004-637X/697/2/1071.
arXiv:0902.1089.
56.
^
The MAGIC Collaboration, J. Albert, et al (2008). ""Upper Limit for
Gamma-Ray Emission above 140 GeV from the Dwarf Spheroidal Galaxy
Draco"". Astrophysical Journal 679: 428–431.
57.
^
The MAGIC Collaboration, J. Aleksic, et al (2009). ""MAGIC Gamma-ray
Telescope Observation of the Perseus Cluster of Galaxies: Implications for
Cosmic Rays, Dark Matter, and NGC 1275"". Astrophysical Journal
710: 634–647.
58.
^
Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.;
Bogomolov, E. A.; Bonechi, L.; Bongi, M. et al. (2009). "An
anomalous positron abundance in cosmic rays with energies 1.5–100 GeV". Nature
458: 607–609. doi:10.1038/nature07942.
59.
^
Brownstein, J.R.; Moffat, J. W. (2007). "The Bullet Cluster 1E0657-558
evidence shows modified gravity in the absence of dark matter". Monthly
Notices of the Royal Astronomical Society 382: 29–47. doi:10.1111/j.1365-2966.2007.12275.x.
arXiv:astro-ph/0702146.
60.
^
Zhang, P.; Liguori, M.; Bean, R. and Dodelson, S. (oct 2007). "Probing Gravity
at Cosmological Scales by Measurements which Test the Relationship between
Gravitational Lensing and Matter Overdensity". Physical Review
Letters 99 (14): 141302-+. doi:10.1103/PhysRevLett.99.141302.
arXiv:0704.1932. http://adsabs.harvard.edu/abs/2007PhRvL..99n1302Z.
61.
^
Reyes, R. et al (mar 2010). "Confirmation of
general relativity on large scales from weak lensing and galaxy
velocities". Nature 464: 256–258. arXiv:1003.2185. http://adsabs.harvard.edu/abs/2010arXiv1003.2185R.
62.
^
Reuter, M.; Weyer, H. (2004). "Running
63.
^
Th. M. Nieuwenhuizen (2009). "Do non-relativistic neutrinos constitute the
dark matter?". Europhysics Letters 86: 57001. doi:10.1209/0295-5075/86/59001.
Further reading
·
Bertone, Gianfranco (2010).
Particle Dark Matter: Observations, Models and
Searches.
·
Nicolao Fornengo (2008). "Status and perspectives of
indirect and direct dark matter searches". Adv.Space Res. 41:
2010–2018. doi:10.1016/j.asr.2007.02.067.
http://arxiv.org/abs/astro-ph/0612786v1. Invited talk at the 36th COSPAR
Scientific Assembly,
·
Report
of the dark energy task force (DETF) 2005. Andreas Albrecht,
·
NASA (2006-08-21). "NASA
Finds Direct Proof of Dark Matter". Press release. http://www.nasa.gov/home/hqnews/2006/aug/HQ_06297_CHANDRA_Dark_Matter.html.
·
Tuttle, Kelen (August 22,
2006). "Dark
Matter Observed". SLAC (Stanford Linear Accelerator Center)
Today. http://today.slac.stanford.edu/feature/darkmatter.asp.
·
"Astronomers claim
first 'dark galaxy' find". New
Scientist. 2005-02-23. http://www.newscientist.com/article.ns?id=dn7056.
·
Wikinews:Dark matter galaxy
discovered
·
"Dark
Matter Detected". Guardian. 2009-12-17. http://www.guardian.co.uk/science/2009/dec/17/dark-matter-detected.
·
Multimessenger Approach
for Dark Matter Detection. Spanish Project of the Consolider-Ingenio 2010
Programme.
Retrieved from "http://en.wikipedia.org/wiki/Dark_matter"
[i]
) See the following references:-
- Omari, 2002; (Omari,
2004; Omari,
2004).
- al-Sabouni, Mohammed
Ali (1981). Mukhtaser Tafseer ibn
Katheer (A Summary of Ibn Katheer’s Interpretation)
- al-Zamakhshari, 538 Hijri, vol. 2: 570.
- Weinberg,
Steven. The First Three Minutes, 6th
printing 1984,
- al-Siyouti,
Abdulhruhaman (911 Hijri) ad-Dur al-Menthour fi al-Tafseer al-Ma’thour (The
Spreading Pearl in the Memorable Interpretation) (2nd. Ed. 1414 Hijri-1993),
Part 1: 106-107.
[ii]
) See the
following references:-
- Ibn Attiyeh al-Andalusi, Abi Mohammed (546 Hijri) al-Muharur
al-Wajeez fi Tafseer al-Kettab al-Aziz (1413 Hijri-1993) (The Editing
Summary in the Interpretation of the Glorious Quran) Vol., 5:181.
- Abi Al-Abbas, Shehab ed-Din (1994) al-Dar
al-Masoun fi Oloum al-Kettab al-Kaknoun.
- Abu Hayan, (654-754 Hijri) An-Nahr
al-Madd, vol. 5: Part 5: 244.
- Ibn
Attiyeh al-Andalusi, (546 Hijri), (1413 Hijri-1993), vol. 5:181.
- Shehab
ed-Din (1994), Part 6: 192.
- Abu Hayan, (654-754 Hijri) al-Bahr al-Muheet, Part 9: 560
[iii]
) See the
following references:-
- as-Sammurgandi, Abi al-Layeth
Nasser bin Mohammed (1993) Bahr al-Oulum (The Sea of Knowledge)
- al-Jouzi, Abi al-Faruj Jamal ed-Din (1987) Zad
al-Maseer fi Elm at-Tafseer (The Provision of Walk in the Science of
Interpretation) Beirut, Dar al-Fikr, 8 Parts, Part 7: 212.
- al-Kasimi, Mohammed Jamal (1332
Hijri- 1914) Mahasen at-Ta’weel (The Advantages of Paraphrase), Dar
al-Fiker (1978), vol. 9, Part 2: 202-03.
- al-Khateeb, 1970, vol. 4: 529-39.
- al-Zamakhshari, 538 Hijri, vol. 4:
20.
- al-Razi, 1208, vol. 4: 227
[iv]
) See the
following references:-
- al-Kasimi, Mohammed Jamal (1332 Hijri- 1914) Mahasen
at-Ta’weel (The Advantages of Paraphrase), Dar al-Fiker (1978), vol. 9,
Part 2: 202-03.
- al-Maourdi, Tasneef Abi al-Hasan
al-Basri (364-450 Hijri) Revised and commented on by as-Siyyed bin
Abdulraheem. Al-Nukat wal Oyoun: Tafseer
al-Maourdi (Secrets - details - and the Eyes: al-Maourdi’s Interpretation).
- al-Nasseri, 1985, Part 6: 93.